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1. Introduction 

A laser beamspread and wander test was conducted at Holloman Air Force Base 
(HAFB) on June 7,1994 by the Army Research Laboratory (Palacios et al. 1994). 
Measurements determined the impact of the helicopter-mounted laser platform 
and environment on propagation characteristics for a mid-infrared (IR) laser. A 
large reflective surface (2.44- by 2.44-m) target board was used to determine beam 
size and intensity. The board contained a beam directing mirror reflecting a hot 
blackbody (IR) source to guide the laser tracking system toward the target board 
(figure 1). The 30-Hz frame rate, model 610 Inframetrics imager from the 
Battlefield Environment Directorate Mobile Imaging Spectroscopy Laboratory 
was used to characterize the diffuse reflections of the 100-KHz, repetitively- 
pulsed, mid-IR laser beam from the target board surface. Data were recorded for 
the helicopter engine on/off, different helicopter altitudes, and different ranges 
from the helicopter to the stationary reflective target board. Several references 
describe characteristics of the imager and image processing techniques 
(Inframetrics 1983; Jordan 1994; Kantrowitz et al. 1990; Crow et al. 1991; 
Watkins et al. 1989; Palacios et al. 1992). 

Hot black IR 
Source 

Figure 1. Experimental setup for June (R = 28 m) and August 
(R = 47 m) tests. 



Although much useful information was derived from the June test, a second test 
was needed. The second test was conducted on August 18, 1994 at HAFB. 
Figure 1 shows the basic experimental setup for the June and August tests, and 
tables 1 and 2 give the test results. For the June test, the imager was 
positioned to the east of the rocket sled at a range of 28 m, and no magnifying 
telescope lens was used. For the August test, the imager was positioned to the 
west of the sled at a range of 47 m, and a 6.7X telescope lens was used. To 
align the laser beam on the target board, a hot blackbody and 10-cm effective 
diameter right angle parabolic mirror were used. For the August test, the 
mirror was mounted on the left side of the target (as viewed from the front) to 
direct the blackbody radiation toward the laser tracker of the helicopter, 
because the laser beam was intentionally offset by about Vi m to the right at a 
250-m range. The mirror was used to prevent the blackbody radiation from 
biasing the measurements of the beam-spread and wander imagery. As it 
turned out, the mirror position was not optimum because the laser tracker aim 
point was shifted left nearly 1 m at a range of 500 m (about a 2 mrad offset), 
and the beam became nonGaussian in intensity distribution for the exhaust 
plume tests. Of the imagery collected, 14 trials were used to analyze the laser 
beam on the target board. 

One shortcoming of the June test was the decreased signal-to-noise level 
produced by solar loading on the target board. A large tent was constructed 
to house the entire target board to eliminate this problem. Also, the resolution 
and sensitivity of the imagery were improved for the August test by using a 
6.7X telescope to isolate the target board in the IR scene. No turbulence data 
were collected at the June test, so a scintillometer was set up at 2-m elevation 
to measure the C2

D value over a 1-km path along the sled track. A computer 
was scheduled to collect the scintillometer data, but the 40+ °C temperatures 
caused the computer and encoder to malfunction. The scintillometer was 
showing a value of C„ in the mid 10 "13 m"2/3. The lack of time encoding for 
the imagery (also caused by hot weather equipment failure) caused problems 
in analyzing the data. One problem that caused more severe consequences was 
the skewing of the laser beam caused by the misalignment of the laser beam 
tracker on the target board by the helicopter mounted laser pointer. (The laser 
pointer in the August test was different from the June test.) The skewing 
problem is addressed later. In spite of the difficulties encountered, the August 



test produced some useful results; effects of the platform and environmental 
condition on the laser beam characteristics were determined. 

Discussion of the test results begin with the hovering trials in which minimal 
beam spread and wandering is expected. The medium range ground trials are 
described to show the effects of the ground-level optical turbulence. Medium 
and far range trials with and without exhaust turbulence are analyzed to show 
the effects of the range and the exhaust turbulence. 

Table 1. June test beam-spread and wander parameters 

Effective Nominal Nominal Nominal 
Mina Maxb Magc Diameter (Wd) (Ht) Diameter Stretch Relative 

Trial (GS) (GS) (GS) pixels pixels pixels pixels (Ht/Wd) Energy 

ld 32 260 228 45.4 51 45 47.9 0.88 1.00 

2e 35 240 205 46.7 43 48 45.4 1.12 0.95 

3e 34 250 216 47.0 41 55 47.5 1.34 1.02 

4f 39 300 261 51.4 45 57.5 50.9 1.28 1.47 

5f 36 250 214 52.4 41 56.5 48.1 1.38 1.25 

6g 40 120 80 57.1 45 100 67.1 2.22 0.56 

7g 40 140 100 53.6 39 78.5 55.3 2.01 0.61 

8h 28 250 222 47.4 35.5 50 42.1 1.41 1.06 

9 32 300 268 55.6 35 78 52.2 2.23 1.76 
"Grayscale value for the background. 
Grayscale value for the peak beam temperature. 

cGrayscale value for the peak beam temperature above the background. 
Trial 1 was at 343-m range with the helicopter on the ground and rotors off. 

trials 2 and 3 were at 343-m range with the helicopter on the ground with the rotors on. 
f 
Trials 4 and 5 were at 343-m range with the helicopter hovering at an elevation of 20 m. 

gTrials 6 and 7 were at 680-m range with the helicopter hovering at an elevation of 20 m. 
mal 8 was the same as trials 4 and 5 except that the helicopter line of sight to the target board was on the same 

side of the target board surface normal. 
'Trial 9 was from the same line of sight as trial 8 through the helicopter exhaust. 



Table 2. August test beam-spread and wander parameters 

Effective Nominal Nominal Nominal 

Mina Maxb Magc Diameter (Wd) (Ht) Diameter Stretch Relative 

Trial (GS) (GS) (GS) pixels pixels pixels pixels (Ht/Wd) Energy 

ld 13 222 222 122.4 107 140 122.4 1.31 1.06 

2d 16 235 219 116.0 99 125 111.2 1.26 0.94 

3e 15 232 217 133.2 115.5 126 120.6 1.09 1.23 

4e 15 237 222 135.1 129.5 123.5 126.5 0.95 1.29 

5f 22 177 155 92.8 72.5 112 90.1 1.54 0.42 

6f 22 192 170 87.9 69 111 87.5 1.61 0.42 

7g 22 146 124 73.8 57 95 73.6 1.67 0.22 

8h 23 190 167 88.1 76.5 111 92.1 1.45 0.41 

9h 21 184 163 88.8 91 140 112.9 1.54 0.41 

10' 19 183 164 86.8 91 109.5 99.8 1.20 0.39 

llj 22 113 91 79 69 158 104.4 2.29 0.18 

12j 20 110 90 81.7 79.5 150 109.2 1.89 0.19 

13k N/A N/A N/A N/A N/A N/A N/A N/A N/A 

14k N/A N/A N/A N/A N/A N/A N/A N/A N/A 

"Grayscale value for the background. 
bGrayscale value for the peak beam temperature. 
cGrayscale value for the peak beam temperature above the background. 
dTrials 1 and 2 were at 250-m range with the helicopter hovering at 20-m elevation. 
^Trials 3 and 4 were at 250-m range with the helicopter hovering at 20-m elevation with the beam passing through 
the exhaust. 
fTrials 5 and 6 were at 500-m range with the helicopter on the ground with the rotors on. 
gTrial 7 was at 500-m range with the helicopter on the ground with the rotors off. 
hTrials 8 and 9 were at 500-m range with the helicopter hovering at a 20-m elevation. 
'Trial 10 was at 500-m range with the helicopter hovering at 20-m elevation with the beam passing through the 
exhaust. 

■'Trials 11 and 12 were at 750-m range with the helicopter hovering at a 20-m elevation. 
''Trials 13 and 14 were at 750-m range with the helicopter hovering at a 20-m elevation with the beam passing 
through the exhaust. 
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2.  Experimental Approach 

The analyses approach used during the June test is presented first. To obtain 
the best signal-to-noise ratio, the imager was set on the most sensitive grayscale 
(GS) range (5 °C separated into 256-levels). The coolest portion of the target 
board was set to the lowest GS level. The laser-produced hot spots, typically, 
were not saturated, although some saturation occurred and had to be dealt with 
during data reduction, as discussed later. Figure 2 shows an example of an 
image from the June test. The time is encoded in the rectangle at the top 
center of the image. The image is a 256 by 256 representation of the 4:3 
aspect of the analog signal scene. The whole image has 320 by 240 pixels; 
therefore, the digitized image contains only about 80 percent of the width and 
has an extra margin at the bottom containing no scene information. In 
addition, there are only 200 lines of actual detector scanned information are in 
each image. The imager was operated to scan only 40 percent of its full field 
of view extent; therefore, the image is only 8° in width instead of 20°. Of the 
65 K pixels in the image, about 40 K (200 by 200) comprise the target board 
area with a background on the left side. The target board had some direct 
solar illumination on the upper left corner because it was not shielded from the 
sun; therefore, the laser beam was positioned on the lower right during the 
June test (figure 2). The first trial of the June test was for the helicopter on 
the ground at a range of 343 m with the rotor engine off. The line of sight to 
the helicopter was about 2° west of the north-south rocket sled track with the 
target board on the south end; whereas, the line of sight to the imager was 
about 5° east of the track. 
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Figure 2. Single-element scanning detector image containing laser hot spots from June 
trial 1. 
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Determining the actual laser beam spreads from a set of images, like the one 
in figure 2, was not a trivial task. First, sets of 50 consecutive images were 
digitized. A simple averaging of images to reduce noise and enhance the signal 
did not work because most of the laser hot spots did not overlap from frame 
to frame. (The hot spots ended up blending into the background GS levels.) 
Therefore, a maximizing utility was used to examine the pixel gray levels of 
the image, select a maximum value for each row and column of the images 
gathered, and place the value in a destination image. Before this operation was 
performed, the scene feature was minimized by taking the absolute difference 
between a 50-frame average of the target scene just before the laser was turned 
on, as shown in figure 3, and the individual laser beam images illustrated by 
figure 2. Figure 4 is the result of the maximizing utility for the 50 laser beam 
images. Not all the feature details disappeared, and the warmer regions, such 
as the upper left portion of the target board, had more variation than the cooler 
portions. The laser beam spread is clearly visible in figure 4 with a slightly 
truncated Gaussian beam shape with a tail trailing off to the right. One point 
should be made with respect to the average beam images: two spots at the 
center of the left-hand side of the image were caused by the mirror holder, 
preventing complete cancellation between the average background image and 
the laser beam images. 

To fill the gaps in the beam, a maximizing filter was used to replace the image 
pixel values in every 3- by 3-pixel grid by the maximum GS value in the 
individual 9-pixel grid. The process was performed three times, shifting the 
grid lattice over and down one pixel each time. Figure 5 shows the results. 
To remove the blockish image edges in figure 5, a smoothing filter was applied 
three times. Figure 6 shows the results. Figure 6 shows a very good 
representation of the laser beam pattern. The representation was used in 
subsequent analyses. Because of an intensity increase when the laser is first 
turned on, the laser beam images were collected beginning approximately 1 s 
after the beam appeared on the target board. 
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Figure 3. Image of 50-frame average of target scene before the laser was turned on in 
June trial 1. 
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Figure 4. Maximizing utility image for 50 laser beam images captured in June trial 1. 
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Figure 5. Maximizing filter image derived from the maximizing utility image in June 
trial 1. 
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Figure 6. Smoothing function image derived from the maximizing filter image in June 
trial 1. 
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Some profiles were truncated because of saturation. A scheme was developed 
to estimate the true peak or maximum to overcome the saturation problem. 
First, the background level (minimum) was derived by isolating the laser beam 
(using a 2X image processing zoom of the laser beam area) and determining 
the 10 percent threshold GS level. During the first June trial, the minimum GS 
was 32 (table 1). By comparing the truncated and nontruncated trials, the 
truncated beam maximum could be derived by extrapolation. For trial 1, the 
resulting maximum value was 260 and yielded a beam magnitude of 228 GS 
values (260 - 32). 

The smoothing function and maximizing filter used on images altered the 
original shape and GS intensity of the laser beam. For example, a circle of GS 
205 and a background of zero is represented in figure 7a. Figure 7b through d 
shows the influence on the circle caused by the smoothing function, 
maximizing filter, and a combination of both. The smoothing function 
(figure 7b) caused the circle to increase in size by 34.30 percent, but decreased 
the intensity of maximum magnitude (205 GS) pixels by 67 percent, as detailed 
in table 3. Although the circle increased in size, it actually appears smaller, 
because the background was averaged with the circle in the smoothing function. 
The maximizing filter increased the area nonuniformly 49.48 percent and the 
intensity 49.48 percent. A combination of the maximizing filter and smoothing 
function increased the area and intensity by 91.62 and 11.11 percent, 
respectively. 
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Figure 7. a) Circle of GS 205 and background zero (top left); b) Circle a smoothed 
three times (top right); c) Circle a maximized fdtered three times (bottom left); 
d) Circle a maximized fdtered and smoothed three times (bottom right). 
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Table 3. Circle analyses 

Area Analyses    Circle 

Histogram %      97.777 % 
Pixels GS 64,079 pixels 
Zero (Min) 

Histogram %     2.223 % 
Pixels GS 205    1,457 pixels 
(Max) 

100%- 0 % 
(Max+Min) 

% Circle Area   0 % 
Increase 

% Circle Area   0 % 
205 
GS Increase 

Maximizing 
Circle Smooth Maximizing Filter X 3 
X3 Filter X 3 Smooth X 3 

7.014 % 96.677 % 
63,579 pixels      63,358 pixels 

95.740 % 
62,744 pixels 

1.491 % 3.323 % 2.472 % 
977 pixels 2178 pixels 1620 pixels 

1.495 % 0 % 
980 pixels 

34.30 % 49.48 % 

-67.0 % 49.48 % 

1.788 % 
1,172 pixels 

91.62 % 

11.11 % 

The maximizing and smoothing routine matches the maximum GS (intensity) 
to the circle area and most closely represents the circle. The smoothing 
function alone does represent the laser beam because of the gaps between hot 
spots in the maximized utility images (figure 4) and the loss in the intensity of 
maximum magnitude pixels of the beam. Figure 8a through d shows the actual 
laser beams in trial 1 manipulated similarly to the circles in figure 7a through 
d; figure 9 details the results. Figure 9 shows pixel GS analyses for row 140 
(at the center of each laser beam pattern in figure 8) and the respective column 
GS values. The maximized filtered and smoothed curve best envelopes and 
represents the diffuse reflected maximized utility image of the laser beam. The 
ideal instrument would be a staring array IR camera; however, a single-element 
detector (IR camera) was used due to the lack of resources. The staring array 
camera would give a truer representation of the diffuse reflected laser beam, 
although, some information about rapid changes in beam characteristics would 
be lost. If staring array imagery becomes available, a cross comparison of 
single-element detector results and the staring array results could be performed. 
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Figure 8. a) Figure 4 from June trial 1 (top left); b) Figure 4 smoothed three times (top 
right); c) Figure 4 maximized filtered three times (bottom left); d) Figure 4 maximized 
filtered and smoothed three times (bottom right). 
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Figure 9. Pixel GS analyses for center of each beam in figure 8. 
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The results of the processing lead to the following conclusions. The beam is 
almost elliptical, but an effective full-width-at-half-maximum (FWHM) 
beamwidth can be assigned. An FWHM is assigned by using the half- 
maximum (GS level 146) threshold and deriving an effective diameter for a 
circle of that area (figure 10). The effective diameter, FWHM, for this trial 
was 45.4 pixels or about 0.4 m on the target board (because each pixel 
represents a square of about 0.88 cm on a side at the 28-m range). The area 
times the beam size was assigned a normalized beam energy (E) value of 1.0. 
The horizontal and vertical beam profiles were determined for the beam at 
FWHM and are termed the nominal width and height. For trial 1, the nominal 
width and height values were 51 and 45 pixels, respectively. The 
eccentricity (e) of the beam was derived from the beam nominal width and 
height (figure 10). For trial 1, the eccentricity is 0.47. Instead of limiting the 
eccentricity to a value of 0 to 1, the beam shapes were assigned a stretch factor 
of the nominal height divided by the nominal width. For trial 1, the stretch is 
0.88. The area of the nominal height and width ellipse can also be used to 
derive a nominal diameter (here 47.9) for comparison with the effective 
diameter (45.4). The nominal diameters were within a few percent of the 
effective diameters, except for a few cases in which the beams were distorted 
to a nonelliptical shape. Hence, the derived stretch values are representative 
of the distortion of the beam. 

2a= nominal width 
2b=nominal height 
Area= nab 
Eccentricity (e) 
e=(v/(a**2-b"2))/a 

R=V(Area/II) 

Figure 10. Ellipse and circle geometry. 
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3.  Results of the Hovering 250-m Range (Trials 1 to 4) 

This section presents a discussion of the results of the August test. The August 
test trials 1 through 4 are shown before trials 5 through 8 to emphasize 
pointing problems. The analyses technique used in the June 1994 test has 
been detailed (Palacios et al. 1994). At the August test, the imager was 
positioned on the west side of the rocket sled (figure 1) to take advantage of 
building shade for the electronic equipment. The positioning had no effect on 
the data reduction approach. Use of a 6.7X telescope to obtain more resolution 
and better signal-to-noise imagery had significant impact. 

The imagery slightly overfills the horizontal field of view with the target 
board. The pixel size at the 47-m range with the full field of view and the 
6.7X telescope is a square of about 0.76 cm on a side instead of the 1.22 cm 
for the June test in which no telescope was used. Hence, the 2.44 m on a side 
target board, which was about 320 pixels wide in the August test imagery, was 
only 200 pixels wide in the June test. In the August test, the full field of view 
images represent 102 K pixels in extent compared to 40 K pixels from the 
previous June test in which a 40 percent field of view was used. In the 
images, only 80 percent of the horizontal extent and 63 percent of the vertical 
extent of the target board are displayed (figures 11 through 14). In the images, 
1 m is equivalent to about 180 pixels. With about 2xh times as many laser 
spots per frame, fewer frames were needed to obtain the maximized filtered 
laser beam pattern (30 frames for figures 11 through 14). The June test 
required almost twice as many frames to produce the same results. Because 
the original imagery data tapes were not time encoded, a significant amount of 
time was expended putting the time code on the audio track to allow for 
automating the consecutive frame grabbing and storing process. 
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Figure 11. Thirty-frame smoothed and filtered image for trial 1 (250-m range hovering 
at 20-m elevation). 
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Figure 12. Thirty-frame smoothed and filtered image for trial 2 (250-m range hovering 
at 20-m elevation). 
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Figure 13. Thirty-frame smoothed and filtered image for trial 3 (250-m range hovering 
at 20-m elevation with the beam passing through the helicopter exhaust). 
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Figure 14. Thirty-frame smoothed and fdtered image for trial 4 (250-m range hovering 
at 20-m elevation with the beam passing through the helicopter exhaust). 
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The effective diameter of the half-maximum beam for the two 20-m elevation 
hovering trials (4 and 5) from the June test yield an average value of 
51.9 pixels. This test most closely compares to the August test's angular 
separations for the imager to target board and helicopter to target board. 
Extrapolation to the August test's 20-m hovering at 250-m range and with 
magnified image conditions yields an effective diameter of 63.2 pixels for 
trials 1 and 2. The corresponding half-maximum threshold areas for trials 1 
and 2 are 11,770 and 10,577 pixels, respectively. The average effective 
diameter for the areas is 119.3 pixels. The enhanced sensitivity and beam 
characteristics have yielded a beam nearly twice the diameter. The 
corresponding vertical stretch factors are 1.28 and 1.38 for the June test trials 
and 1.31 and 1.28 for the August test trials, in excellent agreement for the 
close range, hovering helicopter case. 

The results for trials 3 and 4 (hovering with the beam passing through the 
exhaust) were not consistent with the previous test. The June test trials 8 and 
9 show an exhaust related area increase of a factor of 1.38 and a vertical 
stretch factor of 1.58; whereas, for August, the averaged corresponding values 
are 1.26 and 0.79. The discrepancy can be traced to the horizontal (with some 
vertical) beam displacement and a vertical compression with some horizontal 
stretch caused by the laser pointing mirrors. To collect data on the exhaust 
distorted beam, the imager line of sight had to be lowered slightly (50 pixels 
or lA m) to center the laser beam in the display image. The more significant 
horizontal displacement of nearly xh m could not be completely taken into 
account. As a result, the left edge of the beam is clipped. More significant 
is the beam shape distortion introduced by the pointing mirrors. The beam is 
probably compressed in the vertical by a factor of 30 to 50 percent. 
Unfortunately, there was not enough time during the test to correct for the 
problem by moving the blackbody mirror to the upper center of the target 
board and redoing the appropriate trials, because of helicopter flight time and 
the refueling schedule. 
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4. Ground   Level   500-m   Range   With   and   Without 
Turbulence (Trials 5, 6, and 7) 

During the June test, a comparison of the helicopter on the ground with and 
without the rotor on was made between trial 1 and trials 2 and 3 (table 1). The 
beam area energy of the corresponding cases did not change appreciably for the 
343-m range, although, there was an appreciable difference of the vertical 
stretch factors; a ratio of 1.40. The turbulence level was low; probably C\ on 
the order of mid 10~14 m"2/3 because of the strong 10-m/s winds. 

During the August test, strong ground turbulence, C2 of 10 "13 m~2/3 , and 
moderate winds were present. The comparison of trials 5 and 6 with trial 7 
illustrates the effect of the strong turbulence (see figures 15 to 17 with 80- to 
90-frame averages). Also of significance is the nonGaussian beam intensity 
distribution that results in a smaller effective diameter for the half-maximum 
threshold intensity than in the 250-m trials (1 through 4); whereas, the overall 
beam extent can clearly be seen to have broadened by more than a factor of 2 
(indicative of the 60 percent loss in beam energy shown in table 2). The trials 
also show little difference in the overall shape of the beam; but, the energy 
content has been reduced by 50 percent because of turbulence. This implies 
that the turbulence close to the laser has the most effect and the rotor jitter is 
of little consequence. This is slightly different than the June results that 
showed a 40 percent vertical stretch. 
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Figure 15. Eighty-frame smoothed and filtered image for trial 5 (500-m range on the 
ground with the rotors on). 
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Figure 16. Eighty-frame smoothed and filtered image for trial 6 (500-m range on the 
ground with the rotors on). 
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Figure 17. Ninety-frame smoothed and filtered image for trial 7 (500-m range on the 
ground with the rotors off). 
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5.  Hovering 500-m Range (Trials 8 and 9) 

During the June test, the effect of hovering versus the helicopter on the ground 
with the rotors on was a 10 percent increase in the vertical stretch of the beam 
and a 30 percent increase in the energy content from comparison of trials 2 and 
3 with trials 4 and 5 for a 343-m range. The energy increase could be due to 
less overlap of the maximizing filtered and smoothed areas produced by the 
individual hot spots for the vertically elongated beam. 

Results of the August test are somewhat different than the June test results. 
The comparison of trials 5 and 6 (figures 15 and 16) with trials 8 and 9 
(figures 18 and 19 with 90-frame averages) show little difference in energy 
content and a slight horizontal broadening of the beam (a 5 percent reduction 
of the stretch factor). The beam at 500-m range was about a factor of two- 
thirds as large in both directions as the extrapolated beam profile for the June 
test (67-cm effective diameter at 500-m range in August versus 96-cm effective 
diameter at 500-m in June). The shrinking in diameter as a function of range 
is due to the loss of the relative beam energy content and disproportionate 
amount of area below the half-power GS level between the 250- and 500-m 
range helicopter positions. The influence of the laser-pointer optics is not 
known. 
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Figure 18. Ninety-frame smoothed and filtered image for trial 8 (500-m range hovering 
at 20-m elevation). 
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Figure 19. Ninety-frame smoothed and fdtered image for trial 9 (500-m range hovering 
at 20-m elevation). 
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6.  Hovering 500-m Range Through Exhaust (Trial 10) 

The June test comparison of trials 8 and 9 at a 343-m range shows a vertical 
stretch and a substantial increase in beam energy (possibly associated with the 
analyses technique used for deriving beam geometry from isolated spots in 
consecutive laser beam images) caused by the laser beam passing through the 
helicopter exhaust. 

The bimodal beam character associated with the laser beam that passed through 
the lower portion of the helicopter exhaust plume was not seen in June but was 
noted in the August test. The reason this was not previously noted could be 
the poorer sensitivity of the imager or positioning of the exhaust plume slightly 
to the side of the laser line of sight. The bimodal distribution can be seen by 
comparing trials 8 and 9 (figures 18 and 19) with trial 10 (figure 20 with a 
90-frame average). The beam was translated about Vi m to the left and over 
lA m down on the target board because of the laser pointing mirror. The beam 
is positioned horizontally in about the same place as in the 250-m range exhaust 
trials 3 and 4, because the angular horizontal pointing offset nearly cancels the 
horizontal skewing translation error caused by aiming the laser to the back 
instead of out the side of the helicopter. The two spots associated with the 
mirror holder are located in trial 10 in the upper left portion of the image with 
only the top spot isolated from the laser beam profile. As a result, the image 
of the beam passing through the exhaust plume is clipped on the left side and 
the bottom. The beam is stretched in the vertical and horizontal directions, but 
the amount cannot be accurately quantified because of the clipping. 
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Figure 20.   Ninety-frame smoothed and filtered image for trial 10 (500-m range 
hovering at 20-m elevation). 
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7.    Hovering 750-m Range With and Without Exhaust 
(Trials 11 to 14) 

The results of trials 11 to 14 do not have corresponding analogies from the 
June test. Trials 11 and 12 (figures 21 and 22 with 125-frame averages) are 
for 20-m elevation hovering at 750-m range. Trials 13 and 14 (figures 23 and 
24 with 125-frame averages) are for 20-m elevation hovering at 750-m range 
through the helicopter exhaust. The images for trials 11 and 12 have beams 
that extend significantly above and below the target board vertical extent. The 
stronger, lower peak of the bimodal beam shape, probably, is due to ground 
reflections from the beam below the target board being deposited on the lower 
portion of the target. The bimodal mechanism is different than the one that 
produced the image for trial 10 in which the lower peak is not on the edge of 
the target board. For the exhaust plume trials, the skewing translation error 
caused the beam center to be below the target board; therefore, the presumed 
exhaust induced bimodal beam shape cannot be seen because the strong 
secondary peak in the beam would also be below the target board. The 
significant ground reflections of the beam below the target board produce a 
strong peak on the bottom of the target board image in figures 23 and 24. 
Additional tests are needed to characterize the extent and range dependence of 
the exhaust induced bimodal beam shape. 
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Figure 21. One hundred twenty five-frame smoothed and filtered image for trial 11 
(750-m range hovering at 20-m elevation). 
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Figure 22. One hundred twenty five-frame smoothed and fdtered image for trial 12 
(750-m range hovering at 20-m elevation). 
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Figure 23. Fifty-frame smoothed and filtered image for trial 13 (750-m range hovering 
at 20-m elevation with the beam passing through the helicopter exhaust). 

44 



Figure 24. One hundred-frame smoothed and fdtered image for trial 14 (750-m range 
hovering at 20-m elevation with the beam passing through the helicopter exhaust). 
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8.  Conclusions 

Table 2 summarizes the results from the August test. Table 1 shows the results 
from the June test. The laser beam for the August test had four times the area 
of the June test. Some of this increase could be the result of the improved 
sensitivity and resolution used in the August test via the 6.7X telescope used. 
The August test beam had a 60 percent vertical stretch (trial 7) reduced slightly 
by the rotors being turned as well as hovering in the air. Passing through the 
exhaust caused varying results, depending on the range. At the short range 
(250 m), the beam was compressed in the vertical. At the intermediate range 
(500 m), the beam became bimodal. At the long range (750 m), the beam fell 
predominately below the scattering target board, so no profile information was 
obtained. Note the 50 percent energy loss between the ground level 
500-m-range trials with and without the rotors on, presumably, from the strong 
optical turbulence that predominately affects the beam close to the helicopter. 
Also, passing the beam through the helicopter exhaust caused the beam to 
distort but gave localized enhancement of the beam energy content. This 
phenomenon needs additional data for assessment because the laser beam and 
target board were not optimal for characterization of its range dependence. 
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Acronyms and Abbreviations 

FWHM full width at half maximum 

GS grayscale 

HAFB Holloman Air Force Base 

IR infrared 
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